coordinate$16567$ - ορισμός. Τι είναι το coordinate$16567$
DICLIB.COM
AI-based language tools
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:     

Μετάφραση και ανάλυση λέξεων από τεχνητή νοημοσύνη

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι coordinate$16567$ - ορισμός

Orthogonal coordinate system; Orthogonal coordinate

Orthogonal coordinates         
In mathematics, orthogonal coordinates are defined as a set of d coordinates q = (q1, q2, ..., qd) in which the coordinate hypersurfaces all meet at right angles (note: superscripts are indices, not exponents).
Coordinate covalent bond         
  • Hexamminecobalt(III) chloride
  • Formation of an [[adduct]] of [[ammonia]] and [[boron trifluoride]], involving formation of a coordinate covalent bond.
COVALENT BOND IN A COORDINATION COMPLEX IN WHICH THE SHARED ELECTRONS ARE DONATED BY ONE OF THE ATOMS AND ALSO KNOWN AS DATIVE BOND
Dative covalent bond; Coordinative bond; Coordinate bond; Coordinate covalent bonds; Coordinate Covalent Bond; Dative bond; Coordination bond; Coordinated bond; Co-ordinate covalent bond; Dative bonds; Co-ordinate covalent bonds; Dative covalent bonds; Coordination (bond); Coordinate covalent bonding; Coordination covalent bonds; Dative bonding; Coordinate link; Semipolar bond; Coordinate covalent; Coordinate valence; Dipolar bond; Coordinative covalent bond
In coordination chemistry, a coordinate covalent bond, also known as a dative bond, dipolar bond,IUPAC. Compendium of Chemical Terminology, 2nd ed.
coordinate         
  • The [[Cartesian coordinate system]] in the plane.
  • Cylindrical coordinate system
  • The number line
  • Coordinate surfaces of the three-dimensional paraboloidal coordinates.
  • 250px
SYSTEM FOR DETERMINING THE POSITION OF A POINT
Coordinates; Coordinate; Coordinate transformation; Co-ordinate system; Coordinates (mathematics); Origin of coordinates; Coordinate plane; Coordinate systems; Coordinate axis; Coördinate; Coördinate system; Coordinates (elementary mathematics); Co-ordinate; Spheroidal coordinates; Coordinate surface; Coordinate line; Co-ordinates; Coordinate lines; Coordinate hypersurface; Coordinate surfaces; System of coordinates; Coord; Coördinates (mathematics); Cooerdinate; Coordinate transformations; Cartesian/Polar; Coordiante; Spatial coordinates; Coordinate frame; Negative distance; Coordinate curve; Coordinate curves; Coordinate planes; Image coordinate; N-dimensional coordinate system; Spatial coordinate; Plane coordinate system
(also co-ordinate)
¦ verb k??'?:d?ne?t
1. bring the different elements of (a complex activity or organization) into an efficient relationship.
negotiate with others in order to work together effectively.
2. match or harmonize attractively.
3. Chemistry form a coordinate bond to.
¦ adjective k??'?:d?n?t
1. equal in rank or importance.
Grammar (of parts of a compound sentence) equal in rank and fulfilling identical functions.
2. Chemistry denoting a covalent bond in which one atom provides both the shared electrons.
¦ noun k??'?:d?n?t
1. Mathematics each of a group of numbers used to indicate the position of a point, line, or plane.
2. (coordinates) matching items of clothing.
Derivatives
coordinative adjective
coordinator noun
Origin
C17: from co- + L. ordinare (from ordo 'order').

Βικιπαίδεια

Orthogonal coordinates

In mathematics, orthogonal coordinates are defined as a set of d coordinates q = ( q 1 , q 2 , , q d ) {\displaystyle \mathbf {q} =(q^{1},q^{2},\dots ,q^{d})} in which the coordinate hypersurfaces all meet at right angles (note that superscripts are indices, not exponents). A coordinate surface for a particular coordinate qk is the curve, surface, or hypersurface on which qk is a constant. For example, the three-dimensional Cartesian coordinates (x, y, z) is an orthogonal coordinate system, since its coordinate surfaces x = constant, y = constant, and z = constant are planes that meet at right angles to one another, i.e., are perpendicular. Orthogonal coordinates are a special but extremely common case of curvilinear coordinates.